Neural mechanisms of brain-computer interface control
نویسندگان
چکیده
Brain-computer interfaces (BCIs) enable people with paralysis to communicate with their environment. Motor imagery can be used to generate distinct patterns of cortical activation in the electroencephalogram (EEG) and thus control a BCI. To elucidate the cortical correlates of BCI control, users of a sensory motor rhythm (SMR)-BCI were classified according to their BCI control performance. In a second session these participants performed a motor imagery, motor observation and motor execution task in a functional magnetic resonance imaging (fMRI) scanner. Group difference analysis between high and low aptitude BCI users revealed significantly higher activation of the supplementary motor areas (SMA) for the motor imagery and the motor observation tasks in high aptitude users. Low aptitude users showed no activation when observing movement. The number of activated voxels during motor observation was significantly correlated with accuracy in the EEG-BCI task (r=0.53). Furthermore, the number of activated voxels in the right middle frontal gyrus, an area responsible for processing of movement observation, correlated (r=0.72) with BCI-performance. This strong correlation highlights the importance of these areas for task monitoring and working memory as task goals have to be activated throughout the BCI session. The ability to regulate behavior and the brain through learning mechanisms involving imagery such as required to control a BCI constitutes the consequence of ideo-motor co-activation of motor brain systems during observation of movements. The results demonstrate that acquisition of a sensorimotor program reflected in SMR-BCI-control is tightly related to the recall of such sensorimotor programs during observation of movements and unrelated to the actual execution of these movement sequences.
منابع مشابه
Robot control system using SMR signals detection
One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...
متن کاملSelecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملControl of a 2-DoF robotic arm using a P300-based brain-computer interface
In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملComparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System
Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 55 4 شماره
صفحات -
تاریخ انتشار 2011